Photoelectron Spectra of Complexes [W(CO)₅-**(PMe,Ph&]** : **Triphenylphosphine is a Stronger Base than Trimethylphosphme**

RICHARD J. PUDDEPHATT, LISA DIGNARD-BAILEY and G. MICHAEL BANCROFT

Department of Chemistry, University of Western Ontario, London, Ont., N6A SB7, Conada

Received August 31, 1984

There has been much discussion about the relative basicities of the ligands PMe_nPh_{3-n} [1-3]. Although PMe₃ is the strongest Bronsted base in aqueous solution, PPh₃ is the strongest Bronsted base in the gas phase $[1]$. Arguments have been made that PPh₃ is the strongest Lewis base [2,4], but most workers still regard PMe₃ as the strongest Lewis base in this series of phosphines [3]. For the phosphine complexes of linear or square planar gold(I), gold(II1) or platinum- (II) complexes, the ionization energies of nonbonding 5d-orbitals follow the sequence [4] $L = PPh₃$ $<$ PMePh₂ $<$ PMe₂Ph $<$ PMe₃, and this trend was interpreted either in terms of the Lewis basicity sequence PPh_3 > $PMePh_2$ > PMe_2Ph > PMe_3 , or by a special bonding interaction of the phenyl phosphines involving an *ortho*-hydrogen atom of the ligand and the metal centre, **1** [3,4].

In order to distinguish between these interpretations, photoelectron spectra have been recorded for the series of complexes $[W(CO)_5(PMe_nPh_{3-n})]$, which are co-ordinatively saturated and hence cannot undergo the *ortho*-interaction, 1.

The He I photoelectron spectra of the complexes were recorded as described previously [5], and assignments were straightforward by comparison with spectra of similar complexes [6]. Data are summarized in Table I and the following trends are significant:

1. There is a dramatic increase in the energy of stabilization Δ , of the phosphorus lone pair on coordination along the series $PMe₃ < PMe₂Ph <$ $PMePh₂ < PPh₃$ (Table II), as expected if $PPh₃$ is the strongest σ -donor [4]. The effect is so great that a

TABLE II. Stabilization Energies, $\Delta = IE[\sigma(W-P)]$ - $IE[n(P)],$ eV, for Ligands L.

L	IE[n(P)]	$IE[\sigma(W-P)]$	Δ
PMe ₃	8.62	10.08	1.46
PMe ₂ Ph	8.32	10.28	1.96
PMePh ₂	8.28	10.33	2.05
PPh ₃	7.80	10.44	2.64

conjugative interaction with the phenyl π -system is considered probable. This proposed interaction is shown as a qualitative MO diagram in Fig. 1 where, for the purpose of illustration only, it is assumed that the energies of the phosphorus lone pair orbital, n(P), for the free phosphines and the $o(W-P)$ orbital for the coordinated phosphines would be the same for PMe₃ and PPh₃ in the absence of conjugation. In the free ligand n(P) is higher in energy than the phenyl n-level and so is *destabilized* by conjugation [7] whereas, in the complex, $\sigma(W-P)$ is lower in energy than the phenyl π -level and so is *stabilized* by conju-

TABLE I. Vertical Ionization Energies (eV) from the He I Photoelectron Spectra of $[W(CO)_{5}(PMe_{n}Ph_{3-n})]$.

Assignment	$W(CO)_{5}(PMe_{3})$	$W(CO)_{5}$ (PMe ₂ Ph)	$W(CO)_{5}$ (PMePh ₂)	$W(CO)_{5}PPh_{3}$
W(5d)	7.46	7.34	7.23	7.20
	7.64	7.56	7.42	7.41
	7.90	7.81	7.71	7.67
$Ph(\pi)$			8.83	8.75
	$\overline{}$	9.49	9.42	9.37
$W-P$	10.08	10.28	10.33	10.44
$5\sigma + 1\pi(C-O)$	11.85	11.68	11.27	11.14
	12.56	12.44	12.17	12.16
	14.01	14.05	14.26	14.20
4π (C-O) + Background	17.19	17.51	16.93	15.51

0020-1693/85/\$3.30

0 Elsevier Sequoia/Printed in Switzerland

Fig. 1. Qualitative MO diagram.

gation. We suggest that it is the combination of σ - and n-bonding effects which leads to a much greater value of A for PPh_3 compared to PMe_3 and that this effect will be important and general for tertiary phosphine complexes.

2. The ionization energies of the tungsten *5d*orbitals follow the series $PMe₃ > PMe₂Ph > PMePh₂$ $>$ PPh₃, again indicating that PPh₃ is the strongest donor [4]*. The magnitudes of the splitting of the tungsten t_{2g} orbitals, arising from spin-orbit coupling and n-bonding effects [6], are almost identical for the series of complexes, showing that the phosphine ligands have very similar n-bonding abilities [6].

Since there can be no *ortho*-interaction in these complexes, these results give the most powerful evidence yet found for the u-donor series PPh_3 $PMePh_2 > PMe_2Ph > PMe_3^{\dagger}$. We emphasize, however, that differences in steric effects between $PMe₃$ and $PPh₃$ are probably of great significance in determining the reactivity of complexes with these ligands.

Acknowledgement

We thank NSERC (Canada) for financial support.

References

- S. Ikuta and P. Kebarle, *Can. J Chem., 61, 97 (1983).* $\mathbf{2}$ R. J. Puddephatt, G. M. Bancroft and T. Chan, *Inorg.*
- *Chim. Acta, 73, 83 (1983).*
- B. L. Shaw, J. *Chem. Sot., Chem. Commun., 104 (1979). G.* M. Bancroft, T. C. S. Chan and R. J. Puddephatt, *Inorg.*
- *Chem., 22, 2133* (1983). L. L. Coatsworth, G. M. Bancroft, D. K. Creber, R. J. D. Lazier and P. W. M. Jacobs, J. *Electron Spectrosc. Relat. Phenom., 13, 395 (1978); G.* M. Bancroft, D. J. Bristow and L. L. Coatsworth, *Chem. Phys. Lett., 82, 344 (1981);* G. M. Bancroft, I. Adams, L. L. Coatsworth, C. D. Bennewitz. J. D. Brown and W. D. Westwood. *Anal. Chem., 47, 536 (1975).*
- *6* M. B. Hall,J. *Am. Chem. Sot., 97, 2057 (1975).*
- 7 W. Schafer and A. Schweig, *Angew. Chem.. Int. Ed. Engl. II, 836* (1972).
- *8* W. Buchner and W. A. Schenk, *Znorg. Chem., 23, 132 (1984).*

The greater σ -donor power of PPh₃ over PMe₃, is also indicated by a recent 13 C NMR study of $[W(CO)_{5}L]$.¹*J*- $(183 \text{W}^{13} \text{C})$ for the CO ligand *trans* to L = 145 Hz when L = **PMe₃** and 140 Hz when $L = PPh₃[8]$.

^{*}Differential electron relaxation on ionization may contribute towards this trend, but such effects are most unlikely to reverse the trend in σ -donor series.